In Silico Exploration of the Antimalarial Potential of Soft Coral Lobophytum sp. as a Dihydroorotate Dehydrogenase Inhibitor from Plasmodium falciparum
DOI:
https://doi.org/10.70410/jfg.v11i2.341Keywords:
Lobophytum sp., Malaria, molecular docking, Plasmodium falciparum, soft coralAbstract
Malaria is one of the infectious diseases caused by the Plasmodium parasite and remains a persistent health challenge. Therefore, exploring compounds with potential as antimalarials remains a crucial aspect. This study aims to evaluate the identified compounds from the soft coral Lobophytum sp. as antimalarial candidates using molecular docking techniques, predicting their profiles including pharmacokinetic and drug likeness. The identified compounds from this soft coral were successfully docked into the active site of the Plasmodium falciparum's enzyme dihydroorotate dehydrogenase (DHODH) using AutoDock Vina, and pharmacokinetic profiles and drug likeness were predicted using SwissADME. Compounds Saurufuran B and Oxyphyllacinol from Lobophytum sp. exhibited binding affinity energies of -9.4 kcal/mol and -8.6 kcal/mol against DHODH, which were more negative than other compounds but less negative than the inhibitor F1T (-10.7 kcal/mol). These compounds showed hydrogen bonding with amino acids His185, Lys429, Asn458, and Ser505 and hydrophobic interactions with amino acids Cys175, Leu176, Phe188, Ile263, Arg265 of the DHODH enzyme. The pharmacokinetic profile of these compounds revealed good solubility and high gastrointestinal absorption, making them suitable for drug development. These compounds are expected to inhibit the function of CYP450 isoforms as important metabolizing enzymes in the body. Furthermore, Saurufuran B and Oxyphyllacinol also exhibit a safe toxicity profile and meet the drug-likeness criteria based on Lipinski's Rule of Five. These findings suggest the potential of Saurufuran B and Oxyphyllacinol from Lobophytum sp. as DHODH enzyme inhibitors for P. falciparum with favorable affinity predictions and pharmacokinetic profiles for antimalarial drug development.
Downloads
References
Alzain, A. A., Ahmed, Z. A. M., Mahadi, M. A., Khairy, E. A., & Elbadwi, F. A. (2022). Identification of novel Plasmodium falciparum dihydroorotate dehydrogenase inhibitors for malaria using in silico studies. Scientific African, 16, 1–12. https://doi.org/https://doi.org/10.1016/j.sciaf.2022.e01214
Arfan, A., Muliadi, R., Malina, R., Trinovitasari, N., & Asnawi, A. (2022). Docking and Dynamics Studies: Identifying the Binding Ability of Quercetin Analogs to the ADP-Ribose Phosphatase of SARS CoV-2. Jurnal Kartika Kimia, 5(2), 145–151. https://doi.org/10.26874/jkk.v5i2.143
Arfan, A., Muliadi, R., & Nur Rayani. (2023). Eksplorasi Senyawa Penghambat Enzim Salisilat Sintase dari Mycobacterium tuberculosis melalui Studi Penambatan Molekul dan Prediksi Sifat ADME. Lansau: Jurnal Ilmu Kefarmasian, 1(1), 77–88. https://doi.org/10.33772/lansau.v1i1.9
Bakshi, T., Pham, D., Kaur, R., & Sun, B. (2022). Hidden Relationships between N-Glycosylation and Disulfide Bonds in Individual Proteins. International Journal of Molecular Sciences, 23(7), 1–14. https://doi.org/10.3390/ijms23073742
Belete, T. M. (2020). Recent progress in the development of new antimalarial drugs with novel targets. Drug Design, Development and Therapy, 14, 3875–3889. https://doi.org/10.2147/DDDT.S265602
Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/https://doi.org/10.1016/j.addr.2016.05.007
Chen, G., Seukep, A. J., & Guo, M. (2020). Recent Advances in Molecular Docking for the Research and Discovery of Potential Marine Drugs. Marine Drugs, 18(11), 1–13. https://doi.org/10.3390/md18110545
Citra, S. N. A. L., Arfan, A., Alroem, A., Bande, L. S., Irnawati, I., & Arba, M. (2023). Docking-based workflow and ADME prediction of some compounds in Curcuma longa and Andrographis paniculata as polymerase PA-PB1 inhibitors of influenza A/H5N1 virus. Journal of Research in Pharmacy, 27(1), 221–231. https://doi.org/10.29228/jrp.305
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
Deng, X., Gujjar, R., El Mazouni, F., Kaminsky, W., Malmquist, N. A., Goldsmith, E. J., Rathod, P. K., & Phillips, M. A. (2009). Structural Plasticity of Malaria Dihydroorotate Dehydrogenase Allows Selective Binding of Diverse Chemical Scaffolds*. Journal of Biological Chemistry, 284(39), 26999–27009. https://doi.org/https://doi.org/10.1074/jbc.M109.028589
Duru, V., Witkowski, B., & Ménard, D. (2016). Plasmodium falciparum Resistance to Artemisinin Derivatives and Piperaquine: A Major Challenge for Malaria Elimination in Cambodia. The American Society of Tropical Medicine and Hygiene, 95(6), 1228–1238. https://doi.org/10.4269/ajtmh.16-0234
Hoelz, L. V., Calil, F. A., Nonato, M. C., Pinheiro, L. C., & Boechat, N. (2018). Plasmodium falciparum dihydroorotate dehydrogenase: a drug target against malaria. Future Medicinal Chemistry, 10(15), 1853–1874. https://doi.org/10.4155/fmc-2017-0250
Jiero, S., & Pasaribu, A. P. (2021). Haematological profile of children with malaria in Sorong, West Papua, Indonesia. Malaria Journal, 20(1), 126. https://doi.org/10.1186/s12936-021-03638-w
Kirchmair, J., Göller, A. H., Lang, D., Kunze, J., Testa, B., Wilson, I. D., Glen, R. C., & Schneider, G. (2015). Predicting drug metabolism: experiment and/or computation? Nature Reviews Drug Discovery, 14(6), 387–404. https://doi.org/10.1038/nrd4581
Kokkonda, S., El Mazouni, F., White, K. L., White, J., Shackleford, D. M., Lafuente-Monasterio, M. J., Rowland, P., Manjalanagara, K., Joseph, J. T., Garcia-Pérez, A., Fernandez, J., Gamo, F. J., Waterson, D., Burrows, J. N., Palmer, M. J., Charman, S. A., Rathod, P. K., & Phillips, M. A. (2018). Isoxazolopyrimidine-Based Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Antimalarial Activity. ACS Omega, 3(8), 9227–9240. https://doi.org/10.1021/acsomega.8b01573
Mermer, A., & Vakal, S. (2021). Pyrazine-chromene-3-carbohydrazide conjugates: Molecular docking and admet predictions on dual-acting compounds against sars-cov-2 mpro and rdrp. Journal of Research in Pharmacy, 25(6), 953–966. https://doi.org/10.29228/jrp.92
Mohyeldin, M. M., Akl, M. R., Siddique, A. B., Hassan, H. M., & El Sayed, K. A. (2017). The marine-derived pachycladin diterpenoids as novel inhibitors of wild-type and mutant EGFR. Biochemical Pharmacology, 126, 51–68. https://doi.org/https://doi.org/10.1016/j.bcp.2016.12.003
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
Munro, B. A., & McMorran, B. J. (2022). Antimalarial Drug Strategies to Target Plasmodium Gametocytes. Parasitologia, 2(2), 101–124. https://doi.org/10.3390/parasitologia2020011
Oleg, T., & Arthur J., O. (2010). AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of computational chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
Ottaviani, G., Gosling, D. J., Patissier, C., Rodde, S., Zhou, L., & Faller, B. (2010). What is modulating solubility in simulated intestinal fluids? European Journal of Pharmaceutical Sciences, 41(3), 452–457. https://doi.org/https://doi.org/10.1016/j.ejps.2010.07.012
Perdana, A. A. (2021). Karakteristik Kondisi Lingkungan Penderita Malaria Terhadap Kejadian Malaria. Jurnal Medika Hutama, 03(01), 1686–1703.
Pinzi, L., & Rastelli, G. (2019). Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences, 20(18), 1–23. https://doi.org/10.3390/ijms20184331
Poespoprodjo, J. R., Douglas, N. M., Ansong, D., Kho, S., & Anstey, N. M. (2023). Malaria. The Lancet, 402(10419), 2328–2345. https://doi.org/10.1016/S0140-6736(23)01249-7
Ritchie, T. J., Macdonald, S. J. F., Peace, S., Pickett, S. D., & Luscombe, C. N. (2013). Increasing small molecule drug developability in sub-optimal chemical space. MedChemComm, 4(4), 673–680. https://doi.org/10.1039/C3MD00003F
Rosenthal, P. J. (2020). Falcipain cysteine proteases of malaria parasites: An update. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1868(3), 140362. https://doi.org/https://doi.org/10.1016/j.bbapap.2020.140362
Sahidin, I., Nohong, N., Manggau, M. A., Arfan, A., Wahyuni, W., Meylani, I., Malaka, M. H., Rahmatika, N. S., Yodha, A. W. M., Masrika, N. U. E., Kamaluddin, A., Sundowo, A., Fajriah, S., Asasutjarit, R., Fristiohady, A., Maryanti, R., Rahayu, N. I., & Muktiarni, M. (2023). Phytochemical Profile and Biological Activities of Ethylacetate Extract of Peanut (Arachis hypogaea L.) Stems: In-Vitro and In-Silico Studies with Bibliometric Analysis. Indonesian Journal of Science and Technology, 8(2), 217–242. https://doi.org/10.17509/ijost.v8i2.54822
Sahidin, S., Fristiohady, A., Wahyuni, Arfan, Sadarun, B., Rahmatika, N. S., Yodha, A. W. M., Masrika, N. U. E., Sundowo, A., & Fajriah, S. (2023). Study In-vitro and in-silico of ethylacetate extract and fractions of soft coral Lobophytum sp. towards Artemia salina Brine Shrim (BSLT). BIO Web Conf., 74. https://doi.org/10.1051/bioconf/20237404004
Sarpong, E., Acheampong, D. O., Fordjour, G. N. R., Anyanful, A., Aninagyei, E., Tuoyire, D. A., Blackhurst, D., Kyei, G. B., Ekor, M., & Thomford, N. E. (2022). Zero malaria: a mirage or reality for populations of sub-Saharan Africa in health transition. Malaria Journal, 21(1), 314. https://doi.org/10.1186/s12936-022-04340-1
Shibeshi, M. A., Kifle, Z. D., & Atnafie, S. A. (2020). Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infection and Drug Resistance, 13, 4047–4060. https://doi.org/10.2147/IDR.S279433
Thao, Nguyen P, Luyen, B. T., Brun, R., Kaiser, M., Van Kiem, P., Van Minh, C., Schmidt, T. J., Kang, J. S., & Kim, Y. H. (2015). Anti-Protozoal Activities of Cembrane-Type Diterpenes from Vietnamese Soft Corals. Molecules, 20(7), 12459–12468. https://doi.org/10.3390/molecules200712459
Thao, Nguyen Phuong, Luyen, B. T. T., Ngan, N. T. T., Song, S. B., Cuong, N. X., Nam, N. H., Kiem, P. Van, Kim, Y. H., & Minh, C. Van. (2014). New anti-inflammatory cembranoid diterpenoids from the Vietnamese soft coral Lobophytum crassum. Bioorganic & Medicinal Chemistry Letters, 24(1), 228–232. https://doi.org/https://doi.org/10.1016/j.bmcl.2013.11.033
Torres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva-Jr, F. P. (2019). Key Topics in Molecular Docking for Drug Design. International Journal of Molecular Sciences, 20(18), 1–12. https://doi.org/10.3390/ijms20184574
Tougan, T., Edula, J. R., Morita, M., Takashima, E., Honma, H., Tsuboi, T., & Horii, T. (2020). The malaria parasite Plasmodium falciparum in red blood cells selectively takes up serum proteins that affect host pathogenicity. Malaria Journal, 19(1), 155. https://doi.org/10.1186/s12936-020-03229-1
Vinarov, Z., Abdallah, M., Agundez, J. A. G., Allegaert, K., Basit, A. W., Braeckmans, M., Ceulemans, J., Corsetti, M., Griffin, B. T., Grimm, M., Keszthelyi, D., Koziolek, M., Madla, C. M., Matthys, C., McCoubrey, L. E., Mitra, A., Reppas, C., Stappaerts, J., Steenackers, N., … Augustijns, P. (2021). Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. European Journal of Pharmaceutical Sciences, 162, 105812. https://doi.org/https://doi.org/10.1016/j.ejps.2021.105812
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Authors who publish in Jurnal Farmasi Galenika agree to the following terms:
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. CC BY includes the following elements:
BY: credit must be given to the creator.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.